Carbohydrate Fingerprinting as Applied to Pear Juice and its Authenticity

Jamie Willems, Ph.D. Candidate Supervisor: Dr. N. Low Department of Food and Bioproduct Sciences March 17, 2017

Willems, J. L.; Low, N. H. J. Agric. Food Chem. 2014, 62, 11737-11747.

Food Authenticity

- Food adulteration is a serious worldwide issue that can have significant negative economic and health effects that impact both consumers and producers
- Due to its high carbohydrate content pear juice is susceptible to adulteration by the addition of less expensive nutritive sweeteners
- Therefore the main goal of this research was to develop a method to detect the debasing of pear juice employing capillary gas chromatography with flame ionization detection (CGC-FID)

Materials & Methods

- 30 pure pear juice concentrates representing five processing regions (Argentina; Chile; China; New Zealand; United States) and three years of production (2012-14) were used to develop a representative database
- A CGC-FID method was developed to detect the fingerprint profiles of pear juice and potential adulterants
 - High fructose corn syrup (HFCS 55 and 90)
 - Hydrolyzed inulin syrup (HIS)
 - Total invert sugar (TIS)

Major Carbohydrates/Sorbitol

Table 1. Major carbohydrate and sorbitol concentrations of the pure pear juice database and the select commercial sweeteners at 12.0 °Brix.

	Fructose (g/100mL)	Glucose (g/100mL)	Sucrose (g/100mL)	Sorbitol (g/100mL)	F/G Ratio ^a
Pear Juice: Mean Range	5.85 ± 0.37 ^b 5.26 – 6.86	1.79 ± 0.33 1.03 – 2.50	0.59 ± 0.29 0.19 – 1.45	2.51 ± 0.24 1.73 – 2.98	3.5 ± 1.1 2.3 - 6.7
HFCS 55	7.26 ± 0.05	4.07 ± 0.02	ND^{c}	ND	1.9
HFCS 90	10.99 ± 0.08	0.81 ± 0.01	ND	ND	13.5
HIS	8.21 ± 0.05	2.54 ± 0.19	ND	ND	3.2
TIS	5.16 ± 0.05	5.58 ± 0.05	1.29 ± 0.01	ND	0.9
PJ + 40% HIS	6.44	2.41	0.37	1.79	2.7

^aFructose to glucose ratio. ^b± Standard deviation. ^cND: Not detected

High Fructose Corn Syrup (HFCS)

- Oligosaccharides are carbohydrates comprised of 2 to 10 monosaccharide units
- The addition of HFCS to pear juice can be detected by the presence of α and β -isomaltose
- Detection limits:
 - HFCS 55: 1.0%
 - HFCS 90: 2.0%

Total Invert Sugar (TIS)

- Invert sugar is produced by the treatment of sucrose with acid or invertase
- Detection limit: 3.0%

Figure 2. CGC-FID chromatogram of pure pear juice (A) and the same pear juice adulterated with 10.0% (v/v) TIS (B).

Thavarajah, P.; Low, N. H. J. Agric. Food Chem. 2006, 54, 2754-2760.

Hydrolyzed Inulin Syrup (HIS)

- Due to its fructose-to-glucose ratio HIS is an ideal adulterant for pear juice
- However HIS contains high concentrations of fingerprint compounds making its detection possible at very low levels
 - Tentatively identified as inulobiose (O- β -D-fructofuranosyl-(2 \rightarrow 1)-D-fructose)
- Detection limit: 0.5%

Figure 3. CGC-FID chromatogram of pure pear juice (A) and the same pear juice adulterated with 2.0% (B) and 5.0% (v/v) HIS (C).

Juice-to-Juice Adulteration

- Arbutin (4-hydroxyphenyl-β-D-glucopyranoside) has been identified as a natural constituent of pear juice not found in apple
 - Concentration: 50.6 to 286.9 $\mu L/mL;$ Average of 79.9 $\mu L/mL$
- Based upon the lowest arbutin concentration in pear; OH pear juice addition to apple juice can be detected at levels down to 3.0% (v/v)

HC

Process Adulteration

- Complete liquefaction is a method of juice production which is illegal in North America and the European Union
 - Mash is treated with cellulases and excess pectinases resulting in increased soluble solids and a lower final juice quality
- Cellobiose (O- β -D-glucopyranosyl-(1 \rightarrow 4)-D-glucopyranose) has been reported to be present in juices produced by liquefaction

Figure 4. CGC-FID chromatogram of pear juice plus 50.0 ppm cellobiose. The cellobiose peaks are indicated by arrows.

Conclusions

- A method was developed to detect the adulteration of pear juice with less expensive commercial sweeteners employing CGC-FID
 - Detection limits ranged from: 0.5 to 3.0%
- The developed method can also be used to detect the addition of pear to apple juice and to detect if a juice had been produced using complete liquefaction

Figure 5. Pear juice plus HFCS 55, HIS, TIS and cellobiose. The marker peaks are as follows: 1 = HIS marker; 2 = Abrutin; 3 = HIS marker; $4 = \alpha$ -maltose; $5 = \alpha$ -cellobiose; $6 = \beta$ -maltose; 7 = TIS marker; $8 = \beta$ -cellobiose; 9 = TIS marker; $10 = \alpha$ -isomaltose; $11 = \beta$ -isomaltose.

Thank You